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Abstract

This paper presents o formulation for the identification of linear
multivariable systems from single or multiple sets of input-output data.
The system input-output relationship is capressed in terms of an ob-
server, which is made asymptotically stable by an embedded eigenvalue
assignment procedure. The prescribed cigenvalues for the observer may
be real, compler, mived real and compler, or zero. In this formulation,
the Markov parameters of the observer are identificd from input-output
data. The Markov parameters of the actual system are then recovered
from thosc of the obscrver and used to obtain a state space model of the
system by standard realization techniques. The basic mathematical for-
mulation is derived, and extensive numerical examples using stmulated
noisc-free data are presented to illustrate the proposed method.
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Description of symbol

system matrix (diserete)
observer systemn matrix (discrete)
svstem matrix in observable canonical form

polynorial of delay operators associated with
output

system input influence matrix (discrete)
observer input influence matrix
partition of B associated with input w(7)

partition of B associated with input w(i) for a
deadbeat observer

polynomial of delay operators associated with
input

transformed partition B’ of B for a MIMO
system, B* = TB’

system input influence vector for a SISO system
observer input influence vector for a SISO system

system input influence vector for a SISO system
in observable canonical form

partition of b associated with scalar input

transformed partition ¥ of b for a SISO system,
b =TY

ith element of the transformed vector b*

ith row of the matrix B*
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system output matrix

transformed system output matrix for a MIMO
system, C* = cr!

system output vector for a SISO system

system output vector for a SISO system in
observable canonical form

transformed output vector for SISO systems,
¢ =T}

ith element of the transformed output vector c*

7th column of the transformed system output
matrix C*

direct transmission matrix
direct transmission term for SISO systems

a matrix of identities and null matrices,

a matrix of identities and null matrices,

EqT - [1‘1“1 qu(’"—l)Q]

an r x s block data matrix of Markov parameters
for realization

identity matrix

observer gain

deadbeat observer gain for a MIMO system

transformed observer gain for a MIMO system,

M*=TM
ith row of the matrix M*

number of inputs or
observer gain for a SISO system

observer gain for a SISO system in observable
canonical form

deadbeat observer gain for a SISO system in
observable canonical form

ith element of observer gain mg in observable

canonical form

transformed observer gain for a SISO system,
m* =Tm

ith element of the transformed vector m*

order or assumed order of a linear system
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N scalar number of prescribed complex conjugate pairs of

eigenvalues
Ny scalar nutnber of prescribed real cigenvalues
@) null matrix
P scalar number of observer Markov parameters, C 3.

CAB. ...,CAP"1 B, also referred to as window
width in the identification algorithm

D; scalar coefficients of characteristic equation for a SISO
system

q scalar number of outputs

g ! one-time step delay operator

R" RY R™ space of n-, ¢g-, and m-dimensional real-valued
vectors

T scalar pole radius of prescribed eigenvalues in the

complex plane

T nxn a similarity transformation matrix for 4. A =
T-1AT
Uv Tg X n,sM X n orthonormal matrices obtained from the singular

value decomposition of the Hankel matrix H(0)

u{1) mx 1 input to system at time step i

ui — p) mp X 1 p-time step input history vector

u(i —n) mn x 1 n-time step input history vector

v(7) (m+q) x 1 vector containing input and output served as

“Input” to observer at time step ¢

x(i) n x 1 system state vector at time step ¢

7(7) nx1 estimated system state vector at time step ¢
z(i) nx1 state estimation error vector at time step i
Y; g xm system Markov parameter, Y = CA™B

Y- g x (m+q) observer Markov parameter, Y, = CA™ B
Y(Tl) g X m partition of Y associated with input u(i)
7(72) q X q partition of ¥ associated with output y(7)
y{i) g %1 output of system at time step ¢

y(i) qgx1 estimated output at time step ¢

y(i - n) gn x 1 n-time step output history vector

y(i —p) gp x 1 p-time step output history vector

« nxl1 SISO observer parameter vector associated with

input for real eigenvalue assignment
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q X qn

q X qn

g X qn

(2n+1)x1

2n+1)x1

2n+1)x1

(2n+1) x1

(m+gn+mx1

(m+aqn+mx1

counterpart of « for SISO complex eigenvalue
assignment

counterpart of « for SISO deadbeat eigenvalue
assignment

counterpart of a for SISO mixed eigenvalue
assignment

MIMO observer parameter matrix associated
with input for real eigenvalue assignment
counterpart of o for MIMO complex eigenvalue
assignment

counterpart of a for MIMO deadbeat eigenvalue
assignment

counterpart of a for MIMO mixed eigenvaluc
assignment

SISO observer parameter vector associated with

output for real eigenvalue assignment

counterpart of 3 for SISO complex eigenvalue
assignment

counterpart of 3 for SISO deadbeat eigenvalue
assignment

counterpart of 3 for SISO mixed eigenvalue
assignment

MIMO observer parameter matrix associated
with output for real eigenvalue assignment

counterpart of 3 for MIMO complex eigenvalue
assignmerit

counterpart of 3 for MIMO deadbeat eigenvalue
assignment

counterpart of 3 for MIMO mixed eigenvalue
assignment

combined vector of ¢(¢ — 1), (i — 1), and u(i) for

SISO real eigenvalue assignment

counterpart of I'(i — 1) for SISO complex eigen-
value assignment

counterpart of T'(¢ — 1) for SISO deadbeat
eigenvalue assignment

counterpart of I'(¢ — 1) for SISO mixed eigenvalue
assignment

combined vector of ¢(i — 1), p(i — 1), and u(i) for
MIMO real eigenvalue assignment

counterpart of (¢ — 1) for MIMO complex
cigenvalue assignment
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(m+qgn+m x1
(m+qn+mx1
(2n+1) x 1
(2n+1)x 1
(2n+1)x1
2n+1)x1

2n+1) x 1

2n+1) x 1
(2n+1) x 1
(2n+1) x 1
gx(m+qn+im
gx(m+qgn+m
gx (m+qgn+m
gx{m+qgn+m

gx(m+qg)n+m

gx(m+qgn+m
gx{(m+gn+m
gx(m+qgn+m

nxXn

nXn

nxXmn

counterpart of I'(i — 1) for MIMOQO deadbeat
cigenvalue assignment

counterpart of I'(¢ — 1) for MIMO mixed cigen-
value assignment

vector of combined observer parameters for SISO
real eigenvalue assignment

counterpart of v for SISO complex eigenvalue
assigniment

counterpart of v for SISO deadbeat cigenvalue
assignment

counterpart of v for SISO mixed cigenvalue
assignment

vector of combined observer parameters esti-
mated at time step ¢ for SISO real ecigenvalue
assignment,

counterpart of 5(i) for SISO complex eigenvalue
assignment

counterpart of 3(4) for SISO deadbeat ecigenvalue
assignment,

counterpart of 5(i) for SISO mixed ecigenvalue
assignment

matrix of combined observer parameters for
MIMO real eigenvalue assignment

counterpart of 5 for MIMO complex eigenvalue
assignment

counterpart of y for MIMO deadbeat cigenvalue

assignment,

counterpart of 5 for MIMO mixed ecigenvalue
assignment

matrix of combined observer parameters esti-
mated at time step ¢ for MIMO real cigenvalue
assignment

counterpart of j(a’) for MIMO complex eigenvalue
assignment

counterpart of 5(¢) for MIMO deadbeat eigen-
value assignment

counterpart of 5(i) for MIMO mixed cigenvalue
assignment

diagonal matrix of prescribed real eigenvalues

block diagonal matrix of prescribed complex
cigenvalues

counterpart of A for mixed real and complex
eigenvalues
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nx1

mexXorn

qgx4q

mn X m

mn xXm

mrn xX.m

qn X ¢

qn x g

qn x ¢

nxmn

scalar

scalars

m XxXim

qgxq

nx1

n x 1

prescribed real or complex eigenvalues

vector of powers of prescribed real eigenvalues for
a SISO system

counterpart of A7) for SISO prescribed complex
eigenvalues

counterpart of A™) for SISO prescribed mixed
eigenvalues

diagonal matrix of 7-powers of real eigenvalue A;
repeated m times

diagonal matrix of 7-powers of real eigenvalue A;
repeated ¢ times

matrix of powers of prescribed real eigenvalues
associated with input for a MIMO system

(7)

counterpart of A associated with input for
MIMO complex cigenvalue assignment

counterpart of Ag,:) associated with input for
MIMO mixed eigenvalue assignment

matrix of powers of prescribed real eigenvalucs
associated with output for a MIMO system
counterpart of A((]T) associated with output for
MIMO complex eigenvalue assignment
counterpart of A((Iﬂ associated with output for
MIMO mixed eigenvalue assignment

diagonal matrix of positive singular values

real part of a complex eigenvalue

elements of the matrix

(r) ) ’
a; w; o w
_w?ﬁ) 0.1(7') —Wj g;

(7)

« . T .
diagonal matrix of g, repeated m times

(7)

. . T .
diagonal matrix of o, ' repeated g times

transformed p-time step input history vector
o(i — 1) = Su(i — p) for SISO real eigenvalue
assignment

counterpart of ¢(i — 1) for SISO complex eigen-
value assignment
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nm x 1

nm x 1

nm x 1

nxl1

nx1

nx1

ng x 1

ng x 1

ng x 1

scalar

m o xX.m

qgxq

nxp

nxp

nxp

mn x mp

mn x mp

mn X mp

qn x gp

qn x gp

counterpart of ¢(i — 1) for SISO mixed eigenvalue
assignment

transformed p-time step input history vector
¢(i — 1) = Gy,u(i — p) for MIMO real cigenvaluce
assignmert

counterpart of ¢(i — 1) for MIMO complex
eigenvalue assignment

counterpart of ¢(i — 1) for MIMO mixed eigen-
value assignment

transformed p-time step output history vector
@(i — 1) = Sy(i — p) for SISO real eigenvalue
assignment

counterpart of p(i — 1) for SISO complex cigen-
value assignment

counterpart of (i — 1) for SISO mixed eigenvalue
assignment

transformed p-time step output history vector
p(i — 1) = 3,y — p) for MIMO real eigenvalue
assignment,

counterpart of ¢(i — 1) for MIMO complex
eigenvalue assignment

counterpart of p(i — 1) for MIMO mixed eigen-
value assignient
complex part of a complex eigenvalue

()

. . T
diagonal matrix of w;

diagonal matrix of w?T) repeated ¢ times

repeated m times

Vandermonde-like matrix of real cigenvalues for
SISO systems

counterpart, of § for SISO complex eigenvalue
assignment

counterpart of & for SISO mixed eigenvalue
assignment

Vandermonde-like matrix of real eigenvalues
associated with input for a MIMO system

counterpart of 3, for MIMO complex eigenvalue
assignment

counterpart of &,, for MIMO mixed eigenvalue
assignment

Vandermonde-like matrix of real eigenvalues
associated with output for a MIMO system

counterpart of §, for MIMO complex eigenvalue
assignment

7



Sy gn X qp counterpart of ¥, for MIMO mixed eigenvalue

assignment
R(7) (m+qg)n+m projection or variance matrix for recursive least-
x(m4+qgn+m squares estimation
Abbreviations:
ARMA auto-regressive moving average
ERA Eigensystem Realization Algorithm
MIMO multiple-input multiple-output
SISO single-input single-output
Introduction

The aim of learning identification is to provide methods to improve identification of the
system model as additional information about the system becomes available. The techniques
are in the time domain, and the system information comes in the form of input-output data
from cither multiple experiments or a single experiment of extended duration. Originally,
the idea of learning identification was motivated by the fact that for system identification of
flexible structures, multiple experiments are often performed with the hope that the averaged
data can reduce the effects of irregularities such as measurement noises, repetitive disturbances,
and slight nonlinearities. This motivates the development of learning identification to improve
identification results effectively from multiple experiments. An early technique for identification
of parameters from multiple experiments was formulated in reference 1. Learning identification
in the present form identifies the Markov parameters from general input-output data (ref. 2). The
Markov parameters are then used to obtain a state space model of the system by a realization
procedure, e.g., the Eigensystem Realization Algorithm (ERA) (refs. 3 and 4). The learning
identification procedures presented in reference 2 require input-output data from a large number
of experiments of generally short duration. The procedures identify as many Markov parameters
as the number of data samples in each experiment, and the number of data samples that can be
used is constrained by the number of Markov parameters desired to be identified. In practice,
there may be substantially more data samples in each experiment than the number of desired
Markov parameters. Therefore, these techniques are not efficient in the sense that they do not
necessarily make use of all available input-output data. This motivates the development of
identification algorithms from a single set of input-output data of extended duration. Learning
identification is closely related in concept and technique to learning control, where the motivation
is to develop control laws that improve tracking error based on repeated execution of a task
(refs. 5 11).

An identification procedure from a single set of input-output data is developed in reference 12
by means of an auto-regressive moving average (ARMA) description of the original system
in state space format via an obscrver. An important distinguishing feature of the approach
presented in reference 12 as opposed to previous development is that the system is identified
indirectly by an observer, which is made asymptotically stable by an eigenvalue assignment
procedure. The discrete-time eigenvalues are required to be real, distinct, with magnitudes less
than one. The recursive formulation of reference 12 extends the repetition domain concept used
in learning control and identification to shifting time intervals. It is based on procedures that
identify system Markov parameters for indirect learning control and repetitive control (refs. 9
and 10). The use of Markov parameters in system identification is discussed in reference 13. In
this paper, the identification technique is generalized to allow assignment of complex eigenvalues.
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This generalization is particularly important when the order of the system is large, since it
permits a more even distribution of asymptotically stable eigenvalues inside the unit circle by
using the entire complex plane.

The basic contributions of this paper are as follows: First, a simplified reformulation of the
original identification algorithim with placement of real eigenvalues is presented. Second, the
formulation is extended to the case of complex eigenvalue assignment, which is also applicable
to the general case of assigning both real and complex eigenvalues. Third, a version of this
identification procedure using a deadbeat observer with poles placed at the origin is formulated.
This case is of particular interest since it makes use of a minimum number of data samples, and
the number of identified observer Markov parameters arc reduced to a minimum set. Fourth,
an extensive numerical study is provided to illustrate the basic characteristics of the algorithin.
The deterministic technique developed here is applicable for data from either a single set or
multiple sets of experiments. Because of the complexities in the formulation of the identification
algorithms, the case of single-input single-output systems will be first described. The results
are then extended to the case of multiple-input multiple-output systems. This paper gives a
more detailed presentation of the results in reference 14, with additional examples. In order
to study the exact nature of the identification procedure under ideal circumstances, this paper
is confined to purely deterministic results. In the presence of process and measurement noises,
the relationship between the identification algorithm with a deadbeat observer presented in this
paper and the stochastic Kalman filter algorithm of reference 15 is established in reference 16. A
procedure to improve observer and Kalman filter identification results by whitening the residual
sequence is presented in reference 17. Often of interest in practice is the identification of a
model in a prescribed frequency range. Such a development of the algorithm is formulated in
reference 18.

The general outline of the paper is as follows. The procedurce with real eigenvalue assignment,
which is first presented in reference 12, is reformulated here using a modified mathematical
formulation. The modified formulation allows dircet extension of the procedure to the case
with complex eigenvalue assignment. A special case of the identification procedure when all
eigenvalues are placed at the origin is then presented. For clarity, the formulation for single-
input single-output systems is presented in the main body of the paper, except for the case of
mixed real and complex eigenvalues assignment, which is presented in appendix A. Extensions
of the identification procedure to multiple-input multiple-output systems arc parallel to the
developments for the single-input single-output case. The multivariable case is presented
in appendix B. The truss structure used in the numerical example section is described in
appendix C.

Mathematical Preliminaries

The following general mathematical formulation is applicable to both single-input single-
output (SISO) and multiple-input multiple-output (MIMQO) systems. This section introduces
the basic concepts and establishes some general mathematical relations, which are used to derive
the identification algorithm in subsequent sections.

System Description

In this section, the relationship between the state space model and a particular auto-regressive
moving average (ARMA) model of a linear system is presented. This relationship is particularly



useful for developing an identification procedure. First, consider a general discrete multivariable
linear system expressed in the state space format

x(i+ 1) = Az(i) + Bu(i) }
y(i) = Cz(i) + Du(i)

(1

where z(i) € R",y(i) € R, u(t) € R™. Let z(0) denote the initial state at ¢ = 0. An input-
output description of the above system can be obtained from equation (1) as

i—1
y(i) = CA'z(0) + > CA™T 1 Bu(r) + Du(i) (2)
7=0

Note that the first term on the right-hand side of the above equation is dependent on the initial
condition x(0). The products CA" 7 1B denoted by Y; .. together with D, are known as
the Markov parameters of the system. From equation (2), the input-output description of the
system with zero initial conditions becomes

t—1
y(i) =Y Yru(i —7 — 1) + Du(i) (3)

7=()

where y(i) is expressed in terms of Yy up to Y;_; and the direct transmission term D. In gencral,
this description requires i + 1 Markov parameters to describe the output at time step <. If the
system is asymptotically stable such that the Markov parameters Y, Y,41, Y42, ... can be
neglected for some p, then at time steps ¢ > p, the input-output description can be approximated
with a finite set of Markov parameters as

p—1

y(i) = > Yru(i — 7 —1) + Du(i) (4)

7=0

It is important to note that for a finite dimensional system, there is only a finite number of
independent system Markov parameters. Therefore, the system Markov parameters used in the
description of equation (4) are not necessarily independent. For sufficiently damped systems,
equation (4) is a valid description of the input-output relationship provided that p is chosen
sufficiently large such that the approximation holds. However, for lightly damped systems, such
as large flexible space structures, the ARMA model would require a very large number of Markov
parameters, which would not be computationally attractive for system identification. In fact,
if the system is unstable or marginally stable, such a description is no longer possible. In the
following, a procedure is described to express the state space model in equation (1) as an ARMA
model with a finite number of Markov parameters. The Markov parameters can be shown to be
those of an observer system that is made asymptotically stable by eigenvalue assignment. This
observer model is then used to develop an identification method for the system described by
equation (1).

To construct an observer model, add and subtract the term My(¢) to the right-hand side of
the state equation in equation (1) to yield

z(i + 1) = Az(i) + Bu(i) + My(i) — My(i)
= (A+ MC)x(i) + (B + MD)u(i) — My(i) (5)
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Define

A=A+ MC
B=[B+MD,—M]
. f (6)
o-[i

Then the original system becomes

x(i + 1) = Ax(i) + Bu(i)
y(t) = Cx(i) + Du(i) } "
The input-output description of the system with zero initial conditions is
i—1
y(i) =D Vi 10(r) + Duli) (8)

7=0

where

Yi, 1 =CA7 '}

If the system is made asymptotically stable by placing of the eigenvalues of the matrix A4
such that the Markov paramecters Y, Yo, Y19, ... can be neglected for some p, then at
time steps @ > p, the input-output description can be approximated with a reduced set of p+1

Markov parameters {70, Y. ..., Y1, D}. The following equality

p—1
y(i) => Yro(i~7— 1)+ Duli) (i >p) (9)

=0

then approximately holds. If the original system is observable, then for any system matrix A, it
is always possible to find a matrix A such that the desired eigenvalues of A are placed in any
particular (symmetric) configuration. For the case of lightly damped systems, this procedure
can transform the set of an otherwise large number of Markov parameters to an approximately
equivalent reduced set {7(], Y. ... 71,,1, D} by selecting appropriate eigenvalues for A.
Furthermore, for a sufficiently large p, the influence of a nonzero initial condition on the output
at time steps ¢ > p can be neglected. The model of equation (9) is used to develop the
identification method presented herein, and the eigenvalue assignment step is achieved implicitly
through processing of the measured input-output data. To see that equation (9) is a special auto-
regressive moving average model, it can be rewritten as

p—1 p—1
y(@)+ ) CA+ MO My(i—7-1) = 3 C(A+MC) (B+ MDyu(i — 1)+ Du(i)  (10)
T=0( T=0

Defining a delay operator ¢~ ! applied to a variable z(i) to be ¢ lz(i) = z(i — 1), the above

equation can be written in the usual deterministic ARMA model format
Aa )y =8 (1) u) (11)

11



with the polynomials of the delay operators A (q_l) and B (q‘l) given as
A (q_l) — I+ CMq '+ CAMqg 2+ + CAP Mg P
B (q‘l) —D+CBq ' +CAB'q 2+ - + CAP B¢ P
where A= A+ MC and B'= B+ MD.

Relations of the System to an Observer Model

The role of the matrix M in the above development can be interpreted in terms of an observer
model. Consider the system given in equation (1). It has an observer of the form

2(i + 1) = AT() + Bu(i) — M[y(i) — 5(2)]
y(i) = Cx(i) + Du(i) (12)
It can be shown from equations (12) and (1) that
F(i + 1) = AZ(i) + Bul(i) — MC[z(i) — 3(i)]
— (A + MC)Z(i) + Bu(i) — M{y(i) — Du(4)]
=(A+ MC)Z(i) + (B + MD)u(i) — My(i) (13)
Defining the state estimation error Z(¢) = x(i) — Z(¢), the equation that governs z(¢) is
F(i + 1) = Az(i) + Bu(i) — [(A + MC)Z(i) + (B + M D)u(i) — My(3)]
= (A + MC)Z(i) (14)

If system (1) is observable, then M may be chosen to place the eigenvalues of A + MC in any
desired (symmetric) configuration. In particular, they will be placed inside the unit circle in the
complex plane. From equation (14), if M is chosen such that A + MC is asymptotically stable,

then lim Z(i) = 0; i.e., the estimated state Z(7) converges to the true state z(i) as ¢ approaches
11—

infinity. Equation (13) then becomes
z(i+1)=(A+ MC)x(i) + (B + MD)u(i) — My(z) (15)

which is exactly the same as equation (5).

From this analysis, matrix M can be interpreted as an observer gain. The parameters
Y, ,_1 = CA"""1 B in equation (8) are then the Markov parameters of an observer system;
hence they are now referred to as observer Markov parameters. In the identification process,
these are the parameters to be identified. Once they are identified, the actual system Markov
parameters can be recovered. There is an algebraic relationship between the Markov parameters
of the observer system and those of the actual system. This result is established in the following
section.

Relations Between the Markov Parameters of the Observer and the Actual System

As before, let the Markov parameters of the observer system be denoted by Y ,, and the
Markov parameters of the actual system by Y. Recall that

12



Y,=CA™B
= [C(A+ MC) (B+ MD),—C(A + MC)"M)]

r 7 "

r—\

From the second equation in equation (16), the Markov parameter C'B of the system is simply
Yo=CB=C(B+MD)—(CM)D
=y’ +vPp (17)
To obtain the Markov parameter CAB, first consider the product Y (1)

v = oA+ MoyB + MD)
= CAB+CMCB+ C(A+ MC)MD

Hence,

D (18)

(1)

Similarly, to obtain the Markov parameter C' A2B, consider the product 72

YV = A+ MCO)A(B + M D)
= C(A® + MCA + AMC + MCMC)(B + MD)
=CA’B+CMCAB + C(A+ MC)MCB + C(A+ MC)2MD
Therefore,
Yy = CA’B
=YY —CMCAB - C(A+ MC)MCB - C(A + MC)2ALD

=7+ 7Py v Py + v (19)

“<|

By induction, the general relationship between the actual system Markov parameters and th(
observer Markov parameters can be shown to be

Z Yroi+ YD (20)

For a noise-free finite-dimensional system. knowledge of a sufficient number of actual system
Markov parameters is adequate to deduce a state space realization of the system of interest.
Physical aspects of the model such as natural frequencies, damping ratios, and mode shapes can
then be found.
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Identification Theory for Single-Input Single-Output Systems

In the following, an identification method is developed to identify the coefficients of an ARMA
model that is made asymptotically stable by an embedded eigenvalue assignment procedure. The
coefficients of the ARMA model are precisely the observer Markov parameters formulated in the
above section. For simplicity, consider the case of a single-input single-output system in the
state space format:

(i + 1) = Az (i) + bu(7)
y(i) = ca(i) + du(i) (21)
where z(i) € R", and (i) and y(i) are scalars. The system matrix A is an n x n matrix, b an

n % 1 column vector, ¢ a 1 x n row vector, and the direct transmission term d is a scalar. The
input-output description of this system is given as in equation (9):

p—1
y(i) =) You(i— 7 —1) +dui) (22)
T=0
where
Y, =cA"b=clA+me)[b+md, —m]=[cATH, —cATm] (23)

The observer gain m in this case is an n x 1 column vector. Recall that v(z) contains both the
input u(7) and the output y(i). For i > p, equation (22) can be rewritten as an approximate
ARMA model:

p—1 p—1
y(i) = Z((}Zrb/) u(i—7— 1)+ du(i) - Z(Jﬁn) y(i—7—1) (24)
7=0 7=0

Derived in the following section is an algorithm that computes the coefficients cA7b and cA™m
of the ARMA model in equation (24) and simultaneously places the eigenvalues of A in prescribed
locations so as to make the ARMA model asymptotically stable. These eigenvalues may be real,
complex conjugate pairs, a combination of both, or zero (deadbeat).

SISO Real Eigenvalue Assignment

This is the simplest case, where all the prescribed eigenvalues are real and distinct. The
cigenvalue assignment procedure can be derived by noting that for desired real and distinct
eigenvalues of A, one has for some nonsingular matrix T

A=T7'AT (25)

where A is a diagonal matrix of n prescribed cigenvalues,

Al
A9
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For simplicity, the blank spaces denote zero clements. Then the products ¢ A7 and cA7m

become

CATH = T IATTY

If the elements of ¢* = ¢TI}, b* = TV, and m*

cATm =cT 'ATTm

= T'm arc written explicitly as

% *

b} mj

* *

, b3 . my
b = m =

* %

b;, msy,

then the product ¢A7d in equation (24) may be expressed as

cATH = *ATH =

Similarly,

—cA"m =

—cANTm” =

With the following simplified notations

equation (24) becomes

p—1
U(Z) = QT Z /\(T)u(i B 1) + BT

=0

or simply

-
/\l
-
* ]k * ] * 3% 2
bl e3by o by
.
A“
—cjmy  —cym; —(,';IH:;:I
3
* 1k * Lok K
Q%1 &% (‘nbn:|
—cjm]  —cym3 —c;*lm;‘,]
T
T T T
’\] /\2 ’\n] J

Al

-
2

/\T

n.

p—1
Z Ay =7 - 1)+ du(7)
=0

(27)

(28)

(30)



which is in linear form with the unknown parameters in aT, ﬂT, and d with

¢(i — 1)
wT::[aT‘ ot d] PG—1) = | wli-1) (34)
u(t)
where
p—1 \
oli —1)=> ATu(i -7 — 1) = Su(i - p)
=0 Y (35)
p—-1
p(i-1) =3 ADy(i—7—1)=Sy(i - p)
7=0 J

The matrix I is a Vandermonde-like matrix of prescribed real eigenvalues of magnitudes less
than 1:

LAY D S

p—1 p—2
LY R VI

?

I
—
ws
=
g

oo AT e A

and the p x 1 input and output history vectors u(i — p) and y(i — p) are defined as

_uU——p)— —yU-—Pf

wi-p=| i-p=| ° (37)
w(t —2) y(i —2)
_u(z—l)d _y(z’—l)_

Note that equation (33) is in linear form; thus the unknown observer paramecter vector -y
can be solved for directly from input-output data. For on-line computation, however, recursive
solution is often preferred. Let 5(i) denote the estimated parameter vector at time step ¢. The
standard recursive least-squares solution to equation (33) is simply

R —2TGE — 1)
147G - DITRGE-2)T(E - 1)

A0 =7 - 1) + y(@0) =37~ DI - 1)]
(38)
R —2)T(G - DG — 1D)TR(E - 2)

Ri-1)=R(-2) - — + 06— DITRGE - 2)T6E - 1)

with an arbitrary initial guess 5(0), and R(—1) is any positive definite matrix. Other recursive
parameter estimation algorithms may be used to replace the standard least squares at this step,
e.g., the projection or instrumental variable methods (refs. 19 and 20). The above algorithm
identifies the parameter vector +y, which consists of the products ¢;b}, —cIm} (i =1, 2, ..., n),
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and d. These products together with the assigned eigenvalues A; (i = 1, 2, ..., n) can be used
to reconstruct the observer Markov parameters Y, (7 =0, 1, 2, ...) as

Y;=cATb=cAT[t/,-m]
M
;

% J ok * * 1k
= [(‘,11 cyby - cnan

)\T

n

= | aT A gTA\()

, {-(ﬁ*{m’{ —c3my

¥,

—CpMmy,

T

T

/\T

n

(39)

Finally, the actual system Markov parameters can then be recovered from the above recon-
structed observer Markov parameters according to equation (20):

where ?(T]) = a? X7 and ?72) = gTx\(7),

SISO Complex Eigenvalue Assignment

(40)

With the general mathematical framework developed for real eigenvalue assignment. the
procedure for complex eigenvalue assignment can be similarly derived by replacing equations (25)
and (26) with their counterparts for complex conjugate pairs of eigenvalues A\; = o, + Jw;

(i=1, 2, ..., n/2). Namely, A = T-!A.T, and

g1 W

—wW1 o]

02 W2

17

On/2

—Wn /2

Wy /2

Tn/2

(41)



Furthermore, associated with the complex conjugate pair \; = o; £ jw;, write

,
a; Wy O’Z(T) wZ(T)
= (42)
—w; 0 _J S
K
then the product ¢A7H in equation (24) becomes
cATH = c*ATH*
= 017 (efbf +cb5) + i (e]b3 — e3b) + o7 (305 + ib) + ) (b - ib)
o (b + ) + Wl (b - cibhy)
= ol (43)

Similarly,

cATm = c"Alm*

T T T
= U%T) (elm] + c3m3) + w§ ) (efm5 — ¢ym7}) + O’é ) (c3m3 + cymy) + wé ) (eym} — cym3)
(T) Sk * KoK ) (T) * * ok
o t0, ((‘n—lmn—l + (,nm”) + Y /2 (cn‘lmn - (:nmnfl)
- T
= -8IA" (44)
where
\
ol = [(‘Y"T tesbly by - by e Gyl F b b *ﬂibi-l}
gl = - [(:Imf +chmy  ejmhy —eymy - ol ml_ +epmy i my — rt,*,m,*l_ljl r (45)
7
) 0
AT = 1}7(7 W™ (ry) u);) (75172 ,(,T/)Q] (()']{U) =1, w )_())
/
The elements cf, b7, and m; (i = 1, 2, ..., n) are defined exactly the same way as in

equations (28), and n is now necessarily even, since all the prescribed eigenvalues must appear
as complex conjugate pairs. Equation (24) now becomes

p—1 p—1
y(i) = al Y Auli -7 = 1)+ 8T S ATy — 7 = 1) + du(i)
=0 =0

=~IT.(i - 1) (46)

18



which is in linear form, with

G (i — 1)
W= [0? sr d} Fe(i = 1) = | peli = 1) (47)
u(i)
where .
p—1
pe(i—1) = Z/\S.T)u(i —7—=1)=SQu(i - p)
=0
' > (48)
p—1
peli=1) =3 Ayl =7~ 1) = Sy(i - p) J
T=()

The matrix G is a Vandermonde-like matrix of prescribed complex eigenvalues of magnitudes
less than unity

T
wgpfl) wgpﬂ) wp 0
(Tépﬂ) Uépf?) oy 1
S, = uué})*l) wgz)"Z) w0 (19)
A
Loy el e )

and the px 1 input and output history vectors u(i—p) and y(i—p) arc defined as in equations (37).
Let 5.(i) denote the estimated parameter vector at time step i. The recursive least-squares
solution for the complex eigenvalue case is obtained by simply replacing 7(i) by 3.(i). I'(i — 1)
by I'e(i — 1) in equations (38) with an arbitrary initial guess 3-(0) given, and R(—1) is any
positive definite matrix Ry. Any other recursive algorithm may be used to replace the standard
least squares at this step. The algorithm identifies the parameter vector 7., which consists of the
product sums and differences cr by +ciby, ci_br — cibr . ci_ymi_, +eims;, cr_ym;—ct m;_
(i=1.,2, ..., n), and d. These identified parameters, together with the assigned conjugate
pairs of complex eigenvalues A; (i = 1, 2, ..., n/2), can be used to reconstruct the observer

system Markov parameters Y, (1 =0, 1, 2, ...)
Y, =cATb=cAT [b', —m]
= [alAT 5T A,‘ﬂ”} = [?L” ?‘TQ)J (50)

Finally, the actual system Markov parameters can then be recovered from the above recon-
structed observer Markov parameters according to equation (20) in the same way as the real
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eigenvalue case:

T7—1
Y = oA 4 g7 (Z Ay o+ A@d) (51)
1=0

SISO Deadbeat Eigenvalue Assignment

If all the eigenvalues of the deterministic observer system are placed at the origin, then the
Markov parameters of the observer system will become identically zero after a finitc number of
time steps. This is a deadbeat observer. Specifically,

v,

Il

0 (r=n,n+1, n+2 ..) (52)

where n is the order of the system. Let m, denote the deadbeat observer gain, the expression
relating the input-output of the system and the corresponding observer Markov parameter is
given by

n—1 n—1
y(i) = Z (cATV)u(i —7—1) - Z (cATmg) y(i — 7 — 1) + du(i) (53)
=0 =0

The structure of A can be better seen by considering the system given in equation (21) in
observable canonical form:

0 —aj by
1 0 —as bo
A, = 1. —a3 bo = | b3 co=10 0 0 --- 1 (54)
0
1 —ay by
Let the observer gain in observable canonical form be denoted by me = [m mg my -+ m,,]T

The observer system matrix 4 = A, + myc, is simply

_() —a; +my
1 0 —ag + my
A= 10 —a3 +m3 (55)
1
1 —ap+my

For a prescribed set of eigenvalues A; for A, the observer gain m, is unique and its elements are
p i )
given by m; = a; — p;, where p; are the coefficients of the characteristic equation

A=A A=A A=A =N+ p A"+ 4 ppA+p =0 (56)

Let mg = [m‘ll mg e m;il ]T denote the deadbeat observer gain for the system in observable

canonical form. In the deadbeat case, the characteristic equation is simply A" = 0. Hence, p; = 0.
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mj—l = a;. The observer system matrix 4 then becomes

FO i
1 0

10

5N
1l

1

1 0

=
~1

In this case, it is convenient to work with the system in observable canonical form directly. The
Markov parameters of the deadbeat observer system can be computed as

Y = cobo = o [bo + mdd —mf{] = [bn + mdd —m;{}

S71 ::Co;igo =

Yuo1 =coA" 1p, = {b] + m({d _7"(11]

}QI::Y"+1::?}+2---:(] J

Equation (24) becomes

)

[b,,_l + mg‘ld —m;‘;fl }

n—1 n—1
y(i) = Z (bn—r + mﬁl,,Td) u(i —17—1) — Z mi__yi— 7 — 1) + du(i)
7=0 7=0
Defining the parameter vectors
~ )
a; = | b, + m;]l‘d bn_1 + 771;le cee b+ m({d}
_ g0 50 ()
YU Y1 T ynfl
aT [ d d d r
By =|-mfy -m{_ - —mf
= |v@ (@ v (2)
Y’O }/1 T yrn~1 J
equation (39) can then be written as

y(i) = agy_(i —n)+ £ drg(i —n) + du(i)

=41 Tq(i — 1)

21
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where

u(i —n)
’7(5 = [(rdT dg d] Lyt —1)= | y(i - n) (62)
u(i)

and the n x 1 input and output history vectors w(i —n) and y(i — n) are defined as

- - - B

u(i —n) y(i —n)
u(i —n) = | y(i —n) = | (63)
u(i —2) y(i — 2)
_u(i—l)_ Ly(i_l)_

The recursive solution to equation (61) is obtained by simply replacing 5(i) by 54(i), and ['(i —1)
by ['4(i—1) in equations (38). The actual system Markov parameters can be recovered according
to equation (20) as

n—1

=bp—r — Z mg*‘ry‘f’—i—l (64)
i=0

where b,,_; = mg‘_T =0, forr=n,n+1,....

A particular feature of the deadbeat algorithm is that the observer system Markov parameters
are identically zero after a finite number of time steps. The input-output ARMA relation given
in equation (22) or equation (24) used in deriving the algorithm therefore holds exactly. This is
different from the previous cases, where by placing real and complex eigenvalues of magnitudes
less than unity but greater than zero, the ARMA relation only holds approximately. The degrec
to which the approximation holds depends on the choices of prescribed eigenvalues and the
window width p, i.e., the number of observer Markov parameters retained to maintain a valid
approximation. In the deadbeat case, however, the approximation becomes exact, the window
width p is the order of the system, and the identified parameters contain an exact description
of the system of interest.

Realization by the Eigensystem Realization Algorithm

A state space model of the system from the recovered Markov parameters can be obtained
by the Eigensystem Realization Algorithm (ERA). The algorithm begins with an r x s block
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data matrix called the Hankel matrix and denoted by H (1)

LE CS U (|
YT+1 YT+2 T Yois
H(r) = (65)
Yrir—1 Yegr oo YT+7‘+S—2J

The order of the system is determined by the singular value decomposition of H(0),
HO)=UxvT (66)

where the columns of U and V' are orthonormal, 3 is an n x n diagonal matrix of positive singular
values, and n is the order of the system. Defining a ¢ x rq matrix E,T, and an m X sm matrix

EII made up of identity and null matrices of the form

E(IT: Iyxq qu(r—l)‘l] EZZZ{Ime O"’X(S—l)m (67)

a discrete-time minimal order realization of the system can be shown to be

A, =27 12T gvy-1/2
B, =x'?vTE, (68)
Cr = ElUs!/?
This is the basic ERA formulation. To use ERA in the present identification procedure, the
entries that make up the data matrix given in equation (65) are precisely the recovered system
Markov parameters Y (7 =0, 1, 2, ...). For further details on the algorithm, the readers are
referred to various references in the literature, e.g., references 3 and 4.
Computation Steps
This section reviews the basic steps involved to implement the identification procedure
developed in this paper. The related equations are identified in each step of the process.
Step 1

Assume an order n for the system to be identified. Choose an order p for the ARMA model,
and select the prescribed eigenvalues of the observer. For the cigenvalue assignment procedures,
p is normally several times larger than the assumed order of the system, n. Specifically, the value
of p chosen must be consistent with the prescribed eigenvalues for the observer, as described in
the following:

(a) For real eigenvalues, select n real eigenvalues \; (i =1, 2, ..., n) such that /\f ~ (.
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(b) For complex eigenvalues, the eigenvalues must appear in complex conjugate pairs,

A =o0;jw; (i=1, 2, ..., n/2) such that
P
gy Wi
~0
—wj 0

(c) For a combination of real and complex eigenvalues, the same rules apply.

(d) For deadbeat observers, however, all eigenvalues are set to be zero, and p is the same as n.
The identification equations for the deadbeat case have taken this into account. Therefore,
no explicit specification of the eigenvalues for this case is necessary.

Note that for asymptotic stability, all prescribed real or complex eigenvalues must have
magnitudes less than unity.

Step 2

Compute the observer parameters. The appropriate recursive equations used for each case
are outlined as follows. For observers with assigned real eigenvalues, equations (38) are used for
the SISO case, and equations (1313) are used for the MIMO case. For observers with complex
eigenvalues, the recursive equations are obtained simply by replacing 5(#) by 7.(¢), and I'(i — 1)
by I'.(i — 1) in equations (38) for the SISO case, and by replacing ¥ by 7., and L(i — 1) by
I'( — 1) in equations (B13) for the MIMO case. For observers with mixed real and complex
eigenvalues, replace 5(i) by (i), and I'(i — 1) by T');y(i — 1) in equations (38) for the SISO
case, and (i) by 7, (i), and T'(i — 1) by ', ( — 1) in equations (B13) for the MIMO case. For
deadbeat observers, the appropriate recursive equations are obtained by replacing 5(i) by 74(i).
and T'(i — 1) by [4(i — 1) in equations (38) for the SISO case, and (i) by 74 (i), and T'y(i — 1)
by Ty(i — 1) in equations (B13) for the MIMO case. o

Step 3

Reconstruct the observer Markov parameters from the identified observer parameters. For
observers with real eigenvalues, equation (39) is used for the SISO case, and equation (B14)
is used for the MIMO case. For observers with complex eigenvalues, equation (50) and
equation (B23) are used, respectively. Similarly, for observers with both real and complex
eigenvalues, equation (A11) and equation (B31) are used. For deadbeat observers, however, the
identified parameters are precisely the observer Markov parameters, and no reconstruction of
the observer Markov parameters is needed for this case.

Step 4

Recover the system Markov parameters from the observer Markov parameters. The general
equation is given in equation (20), which is then specialized to various cases. For observers
with real eigenvalues, equation (40) is used for the SISO case, and equation (B15) is used for
the MIMQ case. For observers with complex eigenvalues, equation (51) is used for the SISO
case, and equation (B24) is used for the MIMO case. For observers with both real and complex
eigenvalues, equation (A12) and equation (B32) are used, respectively. For deadbeat observers,
equation (20) directly applies.

Step 5

Realize a state space model for the identified system from the recovered system Markov
parameters in step 4 above. The basic equations for ERA are summarized in equations (65)

to (68).
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Numerical Examples

The theoretical development sections discussed the use of observers and eigenvalue placement
to recover the system Markov parameters. The Markov parameters are the pulse response
samples of a lincar system. The fundamental idea in the developed identification procedure
is to identify parameters of an observer rather than those of the actual system. From the
observer parameters the true system parameters can be recovered. The observer cigenvalues
or poles determine the observer pulse response decay rate. Formulations where the prescribed
eigenvalues are real, complex, mix real and complex, and zero (deadbeat) have been presented.
By making the pulse response of the observer system decay sufficiently fast through the placement
of its poles, one can truncate the response after a finite number of time steps. Because of the
different eigenvalue placement procedures, this approximation will result in different convergence
properties for each respective algorithm.

To study the numerical properties of the identification procedure, an analytical model of a
truss structure is used. The lightly damped structure, known as the Mini-Mast (ref. 21) at
NASA Langley Research Center, is modeled by its first five modes, with frequencies of 0.80,
0.80, 4.36, 6.10, and 6.16 Hz. A more detailed description of the system under consideration is
given in appendix C. The outputs correspond to displacement sensors, and the inputs to torque
actuators. The input-output data are simulated using random inputs for 6 sec. The system is
discretized at a sampling rate of 33.3 Hz, and an input-output history of 200 points is recorded
for system identification, which is performed on a Macintosh IIci computer. The analytical
model contains five modes, but practically only three of them are controllable and observable
from any given input-output pair.

Single-Input Single-Output Examples

First, for clarity the case of single-input single-output identification is studied. Basic
characteristics of the identification algorithm can be seen in the SISO case. For this purpose,
the first input second output pair is used for identification, which results in a system with
essentially three identifiable structural modes, i.c., a sixth-order system. Results for the cases of
real, complex, and deadbeat eigenvalue assignments are presented. The case of mixed real and
complex eigenvalue assignment is omitted here since its numerical properties may be deduced
from those of real and complex eigenvalue assignments.

Consider the case of real eigenvalue assignment. The identification results for this case are
reported in figures 1(a) 1(d). Figure 1(a) shows the nominal case where six observer poles are
placed at £0.2, £0.3, and +0.4. Along with the prescribed pole locations is an estimate of the
number of samples or window width p that it takes for the observer pulse response to decay to a
negligible value. In this example, the window width is selected to be 40 points wide, i.e., p = 40,
so that (£0.2)?, (£0.3)”, (£0.4)P are negligible. The identification procedure starts with an
initial estimate of the system order, which for the nominal case the assumed order is six, n = 6.
Even though the model used is of 10th-order, from any input-output pair the effective order of
the system is only 6.

The top left plot of figure 1(a) shows convergence histories of the observer paramcter values
calculated from the recursive least-squares solution given in equations (38). The constant values
correspond to converged parameters. Since the initial parameters are assumed to be Zero, to
start the algorithm, the projection matrix R(—1) is set to a large value to reflect the degree
of uncertainty of the initial guess. The plot on the top right shows the square root of the
diagonal elements of the variance or projection matrix R (i) after 160 iterations of the recursive
least-squares algorithm. In cases where the exact least-squares solution is obtained and no order
over-specification occurs, the variance matrix approaches zero. In general, the variance matrix
provides a measure of the freedom in the uniqueness of the identified parameters. Note that when
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the identified parameters are not all independent because of order over-specification, the large
variance values do not imply inaccuracies in the parameter estimates. This merely means that for
the specified order, the identified set of observer parameters is not unique. The recursive least-
squares solution is driven by the prediction error shown in the second row of figure 1(a). At any
time step, the prediction error is defined to be the difference between the true output value and
the predicted output value computed based on the estimated model available at that time step.
The initial prediction error is large but quickly goes to zero as the observer parameters converge
to constant values. For the case of real eigenvalue assignment, from the identified observer
parameters, the observer Markov parameters are recovered by equation (39). The actual system
Markov parameters are then computed by equation (40). Using the computed pulse response,
realization of a state-space representation of the system is performed using equations (65)-(68).
At this step, the initial assumption made about the system order (n = 6) is verified by counting
the number of nonzero singular values. Shown in the second row of figure 1(a) is a bar chart of
the normalized singular values which shows six nonzero singular values.

The top four plots of figure 1(a) are indicators as to how well the parameters are identified.
The bottom four plots show results comparing the identified state space model and the true
system model. Included in this group are comparisons of realized and actual pulse responses;
actual displacement history used in the identification, and its reconstruction using the identified
model; and the frequency response functions. There are two curves in each plot; the solid curve
corresponds to actual data and the dashed curve to reconstruction. When an exact model of the
system is identified, the two sets of curves overlap.

To study the effect of order under-specification, figure 1(b) shows the results when the
observer poles are placed on the real axis, as in figure 1(a), but the assumed system order
is set to n = 2. This is a case where not enough freedom is allowed in the identification
procedure. The parameter values, shown on the top left of figure 1(b), do not tend to constant
values as in figure 1(a). Although the variance is small, the prediction error shows discrepancies
between the predicted and actual outputs. Realization using the identified paramecters results
in a system of order two, as shown by the singular value plot. When comparing the impulse
responses, it is clear that the results are in error. So are the reconstructed displacement and
frequency response functions. In this case, the algorithm attempts to identify a sixth-order
system by a second-order model. Figure 1(c) shows the results when the assumed system order
is increased to four, n = 4. Convergence of the parameters is observed, and the corresponding
variance is small. The prediction error fluctuates about zero. The realized system order is four,
as depicted in the singular value plot. Comparing the pulse responses shows very small errors.
However, the frequency response functions show that the identified system (depicted by the
dashed curve) missed the mode with the smallest contribution to the system response. This is
why the reconstructed displacement, when compared with the actual displacement as shown in
the lower left plot, shows no visible differences. This example suggests a potential application
of the algorithm for identification of reduced order models.

To examine the case of order over-specification, figure 1(d) shows the results when the observer
poles are also placed on the real axis as before, but the order of the system is over specified to
be n = 10. Results are similar to those shown in figure 1(a), with two important distinctions.
First, the parameter variances are now substantially larger than those in the previous cases; in
fact they are an order of magnitude larger than the identified parameters. Second, the realized
system order is correctly identified to be 6 even though the initial assumed order is 10. Large
variances are expected when the identified parameters are not all linearly independent. When
order over-specification occurs, there are more parameters than necessary to identify the system
exactly. It is important to observe that at the realization step, however, the system and its order
are identified correctly. For the case of SISO identification, if the assumed order is less than
or equal to the true order of the system, as shown in figures 1(a)-1(c), the algorithm returns
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an identified model with the same order as assumed. However. if the assumed order is more
than the true order, the algorithm returns a model with the correct minimal order, as shown
in figure 1(d). The identification procedure, as mentioned earlier, places the observer poles at
prescribed locations. To verify the proper eigenvalue placement, the observer pulse responses
are used to realize the observer model, and the recovered eigenvalues are found to be identical
to the prescribed values in all cases.

The next group of figures (figs. 2(a) 2(d)) presents results when complex poles are preseribed.
Six complex poles are placed on a circle with a radius r = 0.5 in the complex plane corresponding
to the same damping level. The window width is sclected to be p = 40. The top left
plot shows the parameter convergence histories. The identified parameters are now given by
equation (45) instead of equations (31). The overall performance given in terms of prediction
error, reconstructed response, pulse response, and frequency response functions is similar to that
of the real case. Results for the complex case with order under-specification, n = 2, are shown
in figure 2(b). When the assumed order is increased to four, figure 2(c) shows that the identified
solution misses the weakest mode of the system. Again, this is consistent with previous results.
In the complex case when the system order is over specified, n = 10, some of the parameters
do not converge, as shown in figure 2(d). Nevertheless, the system and its order are identified
correctly. This points out that there are linearly dependent parameters that are being identified.
This is also indicated by the large variances computed.

To study the effect of truncation error when the pulse responses have not decaved to zero
in the allowed window width, the pole radius in the complex case is increased to 0.9 while
maintaining the same window width p = 40. Results in figure 3(a) show the parameter values
drifting, while the variance is relatively small. The correct system order is used in this example.
The prediction error is large, and the realization procedure identifies a fourth-order system. The
identified pulse response. the reconstructed output, and the frequency response functions are
significantly different from those of the actual system. The situation can be casily corrected by
increasing the window width to p = 80 to reduce the truncation error. This is verified by the
results presented in figure 3(b).

To eliminate the truncation error, the observer poles can all be placed at the origin. This
is known as the deadbeat case because the observer pulse responses will go to zero in exactly
a finite number of time steps. No estimate of the window width is needed. because once an
assumption about the system order is made, the window width is automatically fixed. Results
for the deadbeat case assuming the correct order are shown in figure 4(a). These results are
similar to the real and complex cases, although the identified parameters are different. In all the
cases discussed, the same input-output time histories are used for identification. Figures 4(h)
and 4(c) show the deadbeat case when the assumed order is two and four. respectively.
Figure 4(d) depicts results for order over-specification.

As with any numerical method, proper conditioning of the data is important. When
identifying systems where the magnitudes of the input and output values are orders of magnitude
apart, because of the use of different units for example, proper scaling of the numerical values
is critical. This is true even for simple systems. The results shown here are scaled such that the
input and output values have comparable magnitudes prior to application of the algorithm.

Multiple-Input Multiple-Output Examples

Identification of MIMO systems proceeds similarly to the SISO case. The model is the same.
but now two inputs and two outputs are used for identification. The system is now of order 10.
As in the SISO case, 200 data points are used in the identification algorithm.

First, consider the case where all prescribed observer poles are real. Initially the assumed
order is set to n = 4 with corresponding pole locations at +0.2 and 0.3, and the window
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width p is set to 40. The top row of figure 5(a) shows the parameter convergence histories and
the variance distribution for the least-squares solution. The parameters seem to have reached
constant values, but some variations are still observed. Since the true order is 10, this is a
case where the assumed order is less than the true order. This lack of freedom in the identified
parameters prevents the prediction error from converging to zero, as shown in the second row of
figure 5(a). Counting the number of nonzero singular values, the identified system order is found
to be eight. The system pulse response, the reconstructed output, and the frequency response
functions are in error. Figure 5(b) shows the results when the assumed order is increased to
six. The parameters converge to constant values but the variances are large. Large variances
indicate that some redundancy in the identified parameters has occurred. However, this does not
affect the final answers. The prediction error converges to zero, and the system order is correctly
identified to be 10. This is in contrast with the SISO case, where the identified system order does
not exceed the assumed system order. It is important to note that for a given set of poles, the
pole placement problem generally contains an infinite number of solutions for a multiple-output
system. This results in additional freedom in the algorithm that is not present in the SISO case.
It is this freedom that allows the identification of a system with a higher dimension than initially
sought. One interesting aspect of the MIMO case is that when the observer pulse responses are
realized to verify the prescribed pole locations, the apparent observer order is equal to the
assumed order times the number of outputs. The resulting observer poles are those prescribed
initially, but they are repeated as many times as the number of system outputs. A comparison
of the pulse response, the reconstructed response, and the frequency response functions for the
sccond output shows excellent agreement. Results for the first output are similar and not shown
here.

Figure 6(a) shows results when the prescribed observer poles are complex. The poles arc
distributed evenly in the complex plane on a circle with radius 7 = 0.5. The assumed order
is four. As in the real case, the window width p is set to 40. Results are similar to those of
the real case in figure 5(a). Figure 6(b) shows the complex case when the assumed order is set
to six. For the deadbeat algorithm, figures 7(a) and 7(b) show the identification results with
assumed orders of four and six, respectively, when all prescribed poles are placed at the origin.
Performance of the identification algorithm is similar to the previously discussed examples. As
in the SISO case, if the assumed order is higher than the true order, the system can still be
correctly identified, and the algorithm returns an identified model of minimal order.

Concluding Remarks

This paper formulates an algorithm for identification of linear multivariable systems from
general input-output data. Data from either single or multiple sets of experiments can be used
to identify or update the system model. For each data set, the initial condition may be arbitrary
and need not be known. The procedure identifies the Markov parameters of an observer system
instead of those of the actual system. The actual system Markov parameters are recovered from
the obscrver Markov parameters and then used to realize a minimal state space model of the
system. The embedded eigenvalue assignment procedure is used to specify the observer with
asymptotically stable poles. The prescribed poles may be real, complex, or mixed real and
complex. When all the prescribed poles are placed at the origin, this results in an identification
algorithm with a deadbeat observer. Expressed in linear form, the observer Markov parameters
can be solved for in one step for off-line computation, or recursively for on-line computation.
The standard least-squares algorithm, which is used in one step of this identification procedure,
may be replaced by other recursive parameter estimation algorithms. Identification procedures
for both single-input single-output and multiple-input multiple-output systems are formulated,
and numerical examples using noise-free simulated data are presented to illustrate the basic
characteristics of the developed method.
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Appendix A
SISO Mixed Real and Complex Eigenvalue Assignment

The identification procedure with mixed real and complex eigenvalue assignment can be
derived in the same way as the case with real or complex eigenvalues. Among n prescribed

eigenvalues, let n, denote the number of prescribed real eigenvalues \; (i = 1, 2, ..., n,) and
ne the number of prescribed complex eigenvalues, A\; = o; £ jw; (1 =1, 2, ..., n./2). Then

write A = T~1A,,T. and

Al
/\71 r
a1 Wi
Am = —wy 0} (Al)

Tnef2  Wne/2

_wn(-/Q 071(-/2

The product (cA7¥) in equation (24) becomes

cATH = (¢" AT bY)

me

L NT Rk T k)% Tk gk (r) * * * *
- /\l('lbl + ’\2{‘2{)2 +.+ /\n,»(n,-bn, + T ({ur+lbn, B! + (71,-421)71, +2)

) (T) * * * * (T) * * * 3K (7') * * * g%
+ Wy ((n,-+lbn,<+2 - (n,.f‘zbn,- + 1) +.ot (T"( /2 ((’nflbn—l + ('nbn) +w 2 (('u—lbn - ('nbn—l)

/ e

:(}T/\(T) (AQ)

o
Similarly,

CATm = (¢* A7 m")

T % * T .* * T % * (T) * * * *
= Aleimy + Ayeamy + .o+ /\”1_(,,, my,, +0o; ((',"r{,]m“r+l + {nr+‘2"’nr+2)

‘(7') * * * * (T) * * * * () * * * *
+ el ((nrﬁ-lmnr*Q - (mv+2m‘nr+1) t o+ (Y””,2 ((‘"*17””*1 + (/"Tn") + “‘);.,‘/2 ((‘"*1”)" L l)

= -3l (A3)
where
- T
ol = [aT QZJ gl = [BT ,BCT] A _ [AmT Al ] (Ad)
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and

\
ol = [q‘h; by e (-;h_b;jr]
T * * * * * * * * % * ] %
@, = l: ((.n,-+lbn,.+] + (.u,v+2bn,-+2) ((.n,»+lbn,v+2 - ("rtr+2b;‘17»+l) e (('n—lbn - (‘1lb7171) :|
gl = - |:(‘,ITIIT chmy e (:flrrrz:l,_:|
(A5)
3l =~ [("y*,,-l"l:z,ﬂ + ",*p,'+2"’,*.,-+2) (“:;,.H’”:,.w - C;z,+27”;,<+1) SRR CARTUMES (':lnl;‘hl)]
AT = [Ay A) AL }
-
S A L L S ] B LRI L)
)
The elements ¢, b7, and m} (i = 1, 2, ..., n) are defined cxactly the same way as in
equations (28). Equation (24) now becomes
p—1 ) p—1 (
. T T . T T . .
y(i) = ay, Z Anu(i =7 —1)+ 55, Z )\m)y(z —7—1) + du(i)
7=0 7=0
= '7’;77;Fm(i —-1) {A6)
which is again in linear form with
(bm('i - 1)
T T : ,
Tm = (177711 B d:l Fm(i—1)= | em(i—1) (A7)
u(i)
where
p—1 )
. T . .
dm(t—1) = Z /\gn)u(z —7—1) = Syuli - p)
7=0)
f (A8)
p—1
. T - .
pm(i—1) = Z )‘Sn)y(i -T-1)= %m?i(z -p)
=0 /

The matrix 3, is a Vandermonde-like matrix of n prescribed real and complex eigenvalues of
magnitudes less than unity:

)
3
I
&?

(A9)
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where

R I
—1 -2
S _ R A
)\1 )\1 oA 1 Uép—l) 0_51)—2) o . 1
YAV N VS | A
S = 2 2 S = ‘gp~1) wé}k)) che e w9 0 (A10)
p_l p_2 o . . . .
Koy A Ay 1 0(1)_1) U(P_Q) R 1
- - N2 ne/2 ne 2
=1 (p=2) ,
Wn,-/fl wm-/? o W2 0

and the p x 1 input and output history vectors u(i —p) and y(i — p) are defined in equations (38).
The standard recursive least-squares solution for the mixed real and complex eigenvalue case
is obtained by simply replacing the estimated parameter vector 7(i) by (7). and I'(i — 1) by

[y (i — 1) in equations (38). The observer Markov parameters Y, (7 = 0, 1, 2, ---) can be
reconstructed according to

Vo= laaf) i) = [vi0 7] (A1)
Finally, the actual system Markov parameters can then be recovered as
71
Yy = ol A 4 T (Z Ay, Aﬁ,?d) (A12)
t=0
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Appendix B
Generalization to Multiple-Input Multiple-Output Systems

The developed identification theory for single-input single-output systems can be extended
to the multivariable case. Consider the multivariable system in equations (1). The input-output
relation in terms of the Markov parameters of an observer system is given in equation (9), which
can be rewritten in ARMA model form as

p—1 p—1
y(i) =Y (CATBYu(i-7-1)=Y (CATM)y(i — 7 — 1)+ Du(i) (B1)
7=0 =0

where
Y,=CA"B= [CZTB’ —CZTM] B'=B+MD
A recursive algorithm that computes the matrix coefficients of the ARMA model, and at the

same time places the eigenvalues of A at prescribed locations, is derived in the following sections.
These eigenvalues again may be real, complex, a combination of both, or zero (deadbeat).

MIMO Real Eigenvalue Assignment

Let the prescribed eigenvalues of A =T7'AT be denoted by A; (i =1, 2, ---, n). Then the
products CA™B’ and CA™ M become

CA™B =CT 'A"TB" CA™M =CT 'A'TM (B2)

If the elements of C* = CT~!, B* = TB', and M* = TM are written explicitly as

— - — -

«T T
o) M)
*T «T
e e : _|'® "
C = ((1) (/(2) e C(”) B e 1\/[ = (B3)
«T T
b(n) mzn)
where Czi) denotes the ith column vector of the matrix C*, and b’(*g and m{i"')“ (i=1,2, ---, n)

denote the ith row vectors of the matrices B* and M*, respectively, then the products in
equation (B1) may be expressed as

m

>
— ._.3

_ N X « 14T x T x pxT m
CA™B' = C*N"B* = 0(1)b(1) C(Q)b(Z) C(n)b(n) ‘ (B4)
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7)
* «T T AQ

CATM = C"ATM* = | —cymily —eigymig) - —cfymiy| | 72 (B5)

where /\( ™) and /\( ™) are m X m and ¢ x ¢ diagonal matrices of the cigenvalue A; repeated m and
q tlmes respectlvely, ie.,

i
mxm gxq

With the following simplifying definitions as in equations (31)

o =T * gxT * «T
a= [ i @ ”(n)”(n)]
p * «T * «T * «T
E: [_C(l)m(l) —((2)771(2) (( )m( )]
T r (B7)
)\gp = [Ang _ﬁz _/Xnijl
T
=) A A |
equation (Bl) becomes
— p—1
QZ muz—r—l)+92/\q y(i — 7 — 1) + Du(i)
=0 7=0

where u(¢) and y(i) are m x 1 and ¢ x 1 input and output vectors, respectively. The above
equation is in a linear form with the unknown parameters in the matrices a, B, and D with

1:[g g DJ Li—1)= | g(i-1) (B9)
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where

p—1
o(i—1) =S A uli —7 1) = S,uli - p)
=0

and
G- A A

)\(1"2)

m Z1,m

A(P_l) )‘(p*2)

2.m 22.m

\(P=2)

L—”J” An,m

[771 xin

I‘"l xm

IHanI

\

In terms of the prescribed eigenvalues, §,,, has the following structure:
=71m

p—1 ] [ p=2
’\1 /\1
p-1 p—2
Ay ] L Ay
-1 7 [ \p-2
X A, |
gm =
=1 p—2
X X7
—1 -2
X An
—1 -2
Y A
L
Similarly,

3, = [AE{”” AP

Al

A2

A

Ay

A ((10)

(B10)
(B11)
.
1
1
1
(B12)

which has the same general structure as 3, except the block matrices are of dimensions g X ¢.
The mp x 1 input history vector u(i—p) and the gp x 1 output history vector y(i — p) are defined
the same way as in equations (37) except that the input u(t) is of dimensions m x 1, and the
output y(7) is of dimensions g x 1. Equation (B8) is in lincar form: the parameter matrix v can be
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solved for directly from input-output data. For on-line computation, the recursive least-squares
solution to the parameter matrix 7Y 1s given as

RiE—-2)L3(-1)
1406 - DTRGE - 2)D( — 1)

3@ =36 -1+ [u(i) ~ 3(i - DTG — 1)]7

T (B13)
= 2)L (i - 1C(E -1 RG -2
R(i—1) = R(i — 2) — R(: )f(l | )__(.Z ) .(7 )
1+ - 1)TRG - 2)0( - 1)
The observer Markov parameters Y, (=0, 1, 2, ---) can be reconstructed according to
V.= CA"B=CA’ [B’ —M}
= [@&T) QA,(,T)} = [75“ ?Lﬂ (B14)

Finally, the actual system Markov parameters can then be recovered from the reconstructed
observer Markov parameters according to equation (20) as

71
=Y STy Py ¥ ®p
1=0
T—1
= a7+ 8 (Z MY +A,(,T)D) (B15)
=0

MIMO Complex Eigenvalue Assignment

The complex eigenvalue assigniment for the multiple-input multiple-output case can be derived
by setting A = T~ AT, where Ac is given as in equation (41). The prescribed complex conjugate
pairs of eigenvalues are denoted \; = o, *jw; (i=1, 2, ..., n/2). Using the same notation for
vectors formed by the columns and rows of C* and B*. respectively, the products in equation (B1)
may be expressed as

CA™B = C*AIB*
IS C 21 S | . T VV(T) * T * T (7) * T x gxT
= (‘mbm *‘72)”12») oy (‘mb(z) - ‘m”m) + oy (“(:i)”m *‘(4)”(4))
«T

() * * pxT (r) * *T * *T (1) . * T K '
+w, (W:s)"m - ‘(»1)[’(:;)) Tt (((n—l)b(n—l) + %)”(m) W ((rn—l)b(u) - ‘(n)b(zm))

CA™M = C*AT M*

(1)
=0 (
§ ()

AT K T * =7 * *T Sk * T '(7) * «T o «7
+u,2 (((3)”1(1) - ((4),”'(3)) +oot ﬂng’Z (((",1!7”(”,1) + (m)"L(n)) +w”‘,"2 (('[n—l)"l(n) - {(n)”'(n—l])

* T * T IRCa N *T * *T (T)  x _ »T * «T
SETULTY + Con™my: )) +w, ({'(1)"'(2) - ((2)7”(1)) + Ty (1(3)171(3) + (1'1)"’(4))

(B16)
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where

a [(1 b+ by lubln ~ bl by T b )b<$‘c(n)b?5—1)]
Be =~ [ i+ eym ™~ ™) T Gy M ™ )™ _“(*n)’”?z;l)]
N P R O O W [ ¢ R o
M = [ﬂﬁ’.) IR G TR w—n(T/)z,q]T (253,) = Igxqs @y :quq)
The matrices giTTaL and u_)iTn)l are m x m diagonal matrices formed by U,ET) and wZ(T) repeated m

times, respectively; alm and wz(T) are the elements associated with the complex eigenvalue pair

X\ =0, £jw; (i=1,2, -+, n/2) as defined in equation (42), i.e.,
o™ wiT)
() _ (r) _
o= Wi m = (B17)
e o
mxm mxXm

Similar definitions apply for zLETq) and u_JQ(-Z) simply by replacing m by g. Equation (Bl) now
becomes

|
o

3
_

p
y(i) = ap S AThu(i -7 — 1) + B 3 MQyli — 7 ~ 1) + Du(i)

=0 7=0
- ’7(frc(i - 1) (B18)
where
Pcli — 1)
Ve = [QAC B D] &(i—l)z ﬂ(i—l) (B19)
u(i)
The vectors ¢c(i — 1) and @(i — 1) in equations (B19) are given as
p—1 ‘
Geli—1) = 3 Mu(i — 7= 1) = S nuli - p)
7=0
\ (B20)

p—1
(i=1)= 3 Ayli—7 - 1) =S uli - p)

o 7=0
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and similarly,
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In terms of the prescribed complex cigenvalues, S, ,, has the following structure:

(p=1)
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The structure for 3, is similar. The recursive solution to equation (B18) can be obtained by
replacing ¥ by 7., and I'(i —1) by [¢(i — 1) in equations (B13). The observer Markov parameters
and the actual Markov parameters can then be computed as

Y-

= [QQ:ACTm lAgT(}:] = [?T” ?(72)] (B23)



T—1
=Y+ vPy +7%D

1=0
- ()
= & /\( m + j Z )‘r q i1t )\r q (B24)
1=0

MIMO Mixed Real and Complex Eigenvalue Assignment

Among n prescribed eigenvalues, let n, denote the number of prescribed real cigenvalues
A 0= 1, 2, ..., ny) and n. the number of prescribed complex eigenvalues o; + jw,
(i=1,2, ..., ne/2). Then write A =T71A,, T, and A,, as in equation (A1), and define

T
) (r) AT T () i 7
o~ [g g} = {g 5 } M = {Ag,g A7) } A = {A,f,ﬂ A } (B25)
where
ERNEYA R S A * «T
a [‘mbm ‘b “n t’(m)}
R S T * * T I T * T
Q.= I:({'(UTH)b(nr#»l) +((nr‘02)b4ur+2)) ( fu*l){ {r) ((n)bhr—fl))
9 * T * I * T
g=- [‘(1)’”(1) “2)"2) "rm-)”’(n,-)}
. T * T ~ T e T
iz - [( n,+1) n,+l}+((n,-+2)7”‘(n,~+2)) <(1n l)m(n) ((n)”I(n 1))}
and
r T
(v) _ (r) (7) (7]
ﬁ\_m - /\]Tm A?.,m e An, i }
- T
(r} _ (7) (r) (7}
Aq - Al‘q AQ_(I Tt An,»,q
) , r (B26)
(r) _ (7) (7 (7) (7) (7) (7) o Ay
Ar:m =%y Yim Zom Yo ln,,"“z,m gn,y’?.m} s Oy = Dixm s %o s
. T
(r) _ (7) A7) (7) (7) (1) A7) o _ Sy
Acyg = Diq %ig Zog 24 gu.w“‘.!,q “—’m/‘z‘d:l g T Lyxas Lig = Ugxq J
Equation (B1) may be expressed as
p—1 p—1
. ) . . (1) . .
U(Z) = Oy E Amnu(t — 7 — 1) + B E Am.q.”/(l — 7= 1)+ Du(i)
7=0 7=()
= Ymlm(i — 1) (B27)
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where

Gm(i—1)
Y = [_qm B,, D] Lp(i—1) = | om(i—1) (B28)
u(i)
\
G (i Z /\m mu(t — 71— 1) = Gy, uli p)
(B29)
om (i ZA ,qY 1_7_1)—\9mqy( - p)
)

The matrix S, ,, includes elements formed from both real and complex prescribed eigenvalues:

C\,
3
=m
Cx _
Smam = | (B30)
—\2(7,771
where
P-1 _(p=2) (1)
gl,m Ql‘m Ty Tnxom
Cp-1) (p—2) ()
r h Yim Lim w o Grxon
/\(1‘“1) /\(.“ 2) A(l) I
21an 21.m 2lan mxm (p—-1) (p—2) (1) I
QQ,H} T m Tom X
(p—1) )\(P 2) /\(1) I
~ Z2.m “2.mn 22.0m mexan ~ (p-1) {(p—2) (1)
Ny = MSemm = “2.m “om %9 Oumxn
-1 (p-2) (o : - :
_An,-.m )‘nr m An,».m lme ] (p—1) (p-2) U‘ 1} I
ne/2om o T l2m “n./2,m mxan
C(p-1 (p—2) (1)
nef2m '—dﬂn,./‘z(m = f2m Onscin
T) () () .~ . P .
The diagonal matrices /\{ e Tine Wi gn 10 Sy gy are of dimensions m x m, 1 = 1, 2, . M,
or ne/2, and 7 = 1, 2, ..., p— 1. Similar structures apply for 3,, ,, which is composed
T T . . . . .
of the matrices /\( ) o( ) w(. ) of dimensions ¢ x ¢ instead. The recursive solution to the
=g g

parameter mdtrlx 'ym is obvious. The observer Markov parameters and the actual system Markov
parameters are simply

Vo= [andlih audly| = 70 72| B31)

7—1
YT - Q‘mAST:.)m + @ Z _/ng‘)qYTfifl + As;)qD (B32)

=0

MIMO Deadbeat Eigenvalue Assignment
In the deadbeat case, all eigenvalues of the observer are placed at the origin. The

corresponding Markov parameters will vanish identically after n time steps. In other words,
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Y,=0forr=n,n+1,n+2 ....Let M denote the deadbeat observer gain for the multiple-
input multiple-output case. The input-output description is given in terms of the observer
Markov parameters as

n—1 n—1
y(i) = (CATB)yu(i—7—1) — Z (CATMy) y(i — 7 — 1) + Du(i)
=0 7=0

n—1 n-—1
= 7gl)u(i—7—1)—279)y(i—7— 1) + Du(7)
=0 7=0

= aqu(i —n) + Bqy(i — n) + Du(i)

= y4Lg(i — 1) (B33)

where in the above equation B’ = B + M,D, A=A+ M4C, and

u(i —n)
ﬁ:[% B4 DJ Lyli = 1) = | y(i —n) (B34)
ca= [V TP ]
(B35)
=¥ v v

The nm x 1 input history vector u(i — n) and the ng x 1 output history vector y(i — n) are
defined as in equations (63), except u(i) and y(i) are now m x 1 and ¢q x 1 vectors, respectively.
Note that in the deadbeat scheme, the observer Markov parameters are solved directly from
input-output data, and the actual systemm Markov parameters are then recovered simply as in
equation (20).
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Appendix C
The Mini-Mast Truss Structure

A model obtained by finite element analysis of the Mini-Mast truss structure (ref. 21) is
used as an example to illustrate the identification algorithms developed in this paper. The
mathematical model has the first two bending modes, with practically the same frequencies
(0.8 Hz); the first torsional mode (4.3 Hz); and the second two bending modes (6.1 Hz), again
with practically the same frequencies. The model considers two inputs and two outputs. The
inputs are two torque wheels for the z and y axes, and the outputs are two displacement sensors
mounted at the top of the structure as shown in figure C1. The system frequencies and the
associated damping factors expressed as the real parts of the eigenvalues are listed in table C1.

Table C1. Damping and Frequencies of
Truss Structure

Mode Damping factor Frequency, Hz
1 0.09 0.80
2 .09 .80
3 33 4.36
4 38 6.10
5 .39 6.16

The continuous-time system matrices are listed here. For ease of presentation, the matrices are
subdivided and given below:

A= [Al AQ]
where
[ 8918 x 1072 —1.330 x 10~ _5.035 4756 x 107°  9.106 x 10+ |
1303 x 1001 —8912x 1072 ~-1.474 x 107! 5.032 1.309 x 1072
5.035 1.540 x 107! —9.212x 1072 —1.293x 10~ —1.403 x 1079
—4.100 x 107° —5.032 1.335 x 10°1  —9.205 x 1072 —1.540 x 1072
) —39238 x 1073 2093 x 1073 3.540 x 1073 7388 x 107% —3.251 x 107!
1 = . . . .
4.008 x 1073 —7.596 x 1073 —4.048 x 1073 2,748 x 103 27.420

2468 x 1072 —9.535 x 1072 —2.691 x 1072 —1.040 x 107! 1.546 x 1073
~9585 x 1072 —2514x 1072 1.043x 107!  —2748 x 1072  3.791 x 1073
2660 x 1072 —1.015 x 107! —2617x 1072 —9.974 x 1072 —3.283 x 1073
—1.020 x 107} 2,627 x 1072 1.005 x 107! -2.567 x 1072 1.491 x 1072
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[ 1549 x 1073 5498 x 10%  —1.999 x 102 -9.892 x 10~3
1527 x 1072 —2110x 1072 —6.062 x 1073 3.859 x 1072
1214 x 1073 1010 x 1072 —3.766 x 1072  —5.495 x 1073
—1412x 1072 3884 x10-2 1.075x 1072 —2.179x 1072
—27.420 —9.447 x 1073 1.774x 1072 1.114 x 1072
A2 = —3.330 x 107! —9.884 x 1073 2238 x 1072 1.117 x 1072
2839 x 1073 -3.763x 107! 5972 x 107! 38.364
—1.320 x 1072 —5.956 x 1071 —3.790 x 1071 —4.656 x 1072
—2.834 x 1073 —38.364 1638 x 1072 —3.912 x 107!
—2.657x 1073 1.011 x 10~} —38.660 5.986 x 107!
[ 2345 x 1073 —1.996 x 10~ |
—2.101 x 1073 —2.360 x 10~
—2.349 x 1073 1.999 x 1073
—2.015 x 1073 —2.364 x 1073
~1.052 x 1071 —2.488 x 10~
b= 1.107 x 107" 2455 x 10~
1.667 x 1073 9.519 x 107"
—9.095 x 1071 1.554 x 1073
1.630 x 1073 9.180 x 10~*
-8.917x 10°*  1.509 x 103
¢ = [cl cz]
and
0.000 0.000
~ 10,000 0.000
where
[ 1119 % 1072 4016 x 1073 1122 x 102 —4.025 x 103
1= —9.114 x 1073 7.620 x 1073 —9.136 x 1073  —7.639 x 103
[ 9177 x 1073 —4.321 x 10~ —2.448 x 1073 4.669 x 104
C2= —9.326 x 1073 —2.427 x 1073 1.965 x 1073 2.423 x 103

3.740 x 1072
1.079 x 102
2.055 x 1072
~6.517 x 1073
—2.519 x 102
—2.125 x 1072
—1.010 x 107!
38.660
—5.969 x 107!
3.943 x 1071

-9.167 x 1073
~9.311 x 1073

2.393 x 1073
—1.990 x 1073

=

In the numerical examples, the system model is discretized at a sampling frequency of 33.3 Hz.
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"o N
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Displacement sensors
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[

Figure C1. Mini-Mast structure showing the = and y torque wheel inputs TWA ;, TWA,, and the displacement
outputs D18A, D18B on bay 18 tip plane.
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Figure 1. SISO identification of an effectively sixth-order system with real eigenvalue assignment. p = 10,
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Figure 5. MIMO identification of a tenth-order system with real cigenvalue assignment. p = 40.
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Figure 6. MIMO identification of a 10th-order system with complex eigenvalue assignient. p=410; = 0.5,
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Figure 7. MIMO identification of a 10th-order system with deadbeat eigenvalue assignment.
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